Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.418
Filtrar
1.
BMC Med ; 22(1): 146, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561734

RESUMO

BACKGROUND: Childhoods in urban or rural environments may differentially affect the risk of neuropsychiatric disorders, possibly through memory processing and neural response to emotional stimuli. Genetic factors may not only influence individuals' choices of residence but also modulate how the living environment affects responses to episodic memory. METHODS: We investigated the effects of childhood urbanicity on episodic memory in 410 adults (discovery sample) and 72 adults (replication sample) with comparable socioeconomic statuses in Beijing, China, distinguishing between those with rural backgrounds (resided in rural areas before age 12 and relocated to urban areas at or after age 12) and urban backgrounds (resided in cities before age 12). We examined the effect of childhood urbanicity on brain function across encoding and retrieval sessions using an fMRI episodic memory paradigm involving the processing of neutral or aversive pictures. Moreover, genetic association analyses were conducted to understand the potential genetic underpinnings that might contribute to memory processing and neural mechanisms influenced by early-life urban or rural environments. RESULTS: Episodic memory retrieval accuracy for more difficult neutral stimuli was similar between those with urban and rural childhoods, whereas aversive stimuli elicited higher retrieval accuracy in the urban group (P = 0.023). For aversive stimuli, subjects with urban childhood had relatively decreased engagement of the striatum at encoding and decreased engagement of the hippocampus at retrieval. This more efficient striatal encoding of aversive stimuli in those with urban childhoods was associated with common variation in neurotrophic tyrosine kinase receptor type 2 (NTRK2) (right striatum: P = 1.58×10-6). These findings were confirmed in the replication sample. CONCLUSIONS: We suggest that this differential striatal processing of aversive stimuli observed in individuals with urban or rural childhoods may represent mechanisms by which childhood urbanicity may affect brain circuits, heightening behavioral responses to negative stressors associated with urban environments. NTRK2-associated neural processes in the striatum may play a role in these processes.


Assuntos
Memória Episódica , Adulto , Criança , Humanos , Mapeamento Encefálico , Emoções/fisiologia , Hipocampo , Imageamento por Ressonância Magnética , Receptor trkB
2.
Proc Natl Acad Sci U S A ; 121(17): e2303664121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621124

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptic physiology, as well as mechanisms underlying various neuropsychiatric diseases and their treatment. Despite its clear physiological role and disease relevance, BDNF's function at the presynaptic terminal, a fundamental unit of neurotransmission, remains poorly understood. In this study, we evaluated single synapse dynamics using optical imaging techniques in hippocampal cell cultures. We find that exogenous BDNF selectively increases evoked excitatory neurotransmission without affecting spontaneous neurotransmission. However, acutely blocking endogenous BDNF has no effect on evoked or spontaneous release, demonstrating that different approaches to studying BDNF may yield different results. When we suppressed BDNF-Tropomyosin receptor kinase B (TrkB) activity chronically over a period of days to weeks using a mouse line enabling conditional knockout of TrkB, we found that evoked glutamate release was significantly decreased while spontaneous release remained unchanged. Moreover, chronic blockade of BDNF-TrkB activity selectively downscales evoked calcium transients without affecting spontaneous calcium events. Via pharmacological blockade by voltage-gated calcium channel (VGCC) selective blockers, we found that the changes in evoked calcium transients are mediated by the P/Q subtype of VGCCs. These results suggest that BDNF-TrkB activity increases presynaptic VGCC activity to selectively increase evoked glutamate release.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cálcio , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Transmissão Sináptica/fisiologia , Sinapses/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio da Dieta , Receptor trkB/genética , Receptor trkB/metabolismo , Glutamatos/metabolismo
3.
Arch Pharm Res ; 47(4): 341-359, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592583

RESUMO

The relationship between schizophrenia (SCZ) and cancer development remains controversial. Based on the disease-gene association platform, it has been revealed that tumor necrosis factor receptor (TNFR) could be an important mediatory factor in both cancer and SCZ development. TNF-α also increases the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) in the development of SCZ and tumor, but the role of TNFR in mediating the association between the two diseases remains unclear. We studied the vital roles of TNFR2 in the progression of tumor and SCZ-like behavior using A549 lung cancer cell xenografted TNFR2 knockout mice. TNFR2 knockout mice showed significantly decreased tumor size and weight as well as schizophrenia-like behaviors compared to wild-type mice. Consistent with the reduced tumor growth and SCZ-like behaviors, the levels of TrkB and BDNF expression were significantly decreased in the lung tumor tissues and pre-frontal cortex of TNFR2 knockout mice. However, intravenous injection of BDNF (160 µg/kg) to TNFR2 knockout mice for 4 weeks increased tumor growth and SCZ-like behaviors as well as TrkB expression. In in vitro study, significantly decreased cell growth and expression of TrkB and BDNF by siTNFR2 transfection were found in A549 lung cancer cells. However, the addition of BDNF (100 ng/ml) into TNFR2 siRNA transfected A549 lung cancer cells recovered cell growth and the expression of TrkB. These results suggest that TNFR2 could be an important factor in mediating the comorbidity between lung tumor growth and SCZ development through increased TrkB-dependent BDNF levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neoplasias Pulmonares , Camundongos Knockout , Receptor trkB , Receptores Tipo II do Fator de Necrose Tumoral , Esquizofrenia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Humanos , Camundongos , Esquizofrenia/metabolismo , Esquizofrenia/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Receptor trkB/metabolismo , Receptor trkB/genética , Células A549 , Masculino , Comportamento Animal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
4.
BMC Microbiol ; 24(1): 134, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654189

RESUMO

BACKGROUND: The incidence of exertional heat stroke (EHS) escalates during periods of elevated temperatures, potentially leading to persistent cognitive impairment postrecovery. Currently, effective prophylactic or therapeutic measures against EHS are nonexistent. METHODS: The selection of days 14 and 23 postinduction for detailed examination was guided by TEM of neuronal cells and HE staining of intestinal villi and the hippocampal regions. Fecal specimens from the ileum and cecum at these designated times were analyzed for changes in gut microbiota and metabolic products. Bioinformatic analyses facilitated the identification of pivotal microbial species and metabolites. The influence of supplementing these identified microorganisms on behavioral outcomes and the expression of functional proteins within the hippocampus was subsequently assessed. RESULTS: TEM analyses of neurons, coupled with HE staining of intestinal villi and the hippocampal region, indicated substantial recovery in intestinal morphology and neuronal injury on Day 14, indicating this time point for subsequent microbial and metabolomic analyses. Notably, a reduction in the Lactobacillaceae family, particularly Lactobacillus murinus, was observed. Functional annotation of 16S rDNA sequences suggested diminished lipid metabolism and glycan biosynthesis and metabolism in EHS models. Mice receiving this intervention (EHS + probiotics group) exhibited markedly reduced cognitive impairment and increased expression of BDNF/TrKB pathway molecules in the hippocampus during behavioral assessment on Day 28. CONCLUSION: Probiotic supplementation, specifically with Lactobacillus spp., appears to mitigate EHS-induced cognitive impairment, potentially through the modulation of the BDNF/TrKB signaling pathway within the hippocampus, illustrating the therapeutic potential of targeting the gut-brain axis.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Golpe de Calor , Hipocampo , Animais , Camundongos , Disfunção Cognitiva/microbiologia , Disfunção Cognitiva/etiologia , Hipocampo/metabolismo , Golpe de Calor/complicações , Golpe de Calor/microbiologia , Masculino , Probióticos/administração & dosagem , Camundongos Endogâmicos C57BL , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fezes/microbiologia , RNA Ribossômico 16S/genética , Modelos Animais de Doenças , Neurônios/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Receptor trkB/metabolismo , Receptor trkB/genética
5.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338875

RESUMO

Both the brain-derived neurotrophic factor (BDNF) and glucocorticoids (GCs) play multiple roles in various aspects of neurons, including cell survival and synaptic function. BDNF and its receptor TrkB are extensively expressed in neurons of the central nervous system (CNS), and the contribution of the BDNF/TrkB system to neuronal function is evident; thus, its downregulation has been considered to be involved in the pathogenesis of Alzheimer's disease (AD). GCs, stress-related molecules, and glucocorticoid receptors (GRs) are also considered to be associated with AD in addition to mental disorders such as depression. Importantly, a growing body of evidence suggests a close relationship between BDNF/TrkB-mediated signaling and the GCs/GR system in the CNS. Here, we introduce the current studies on the interaction between the neurotrophic system and stress in CNS neurons and discuss their involvement in the pathophysiology of AD.


Assuntos
Doença de Alzheimer , Fator Neurotrófico Derivado do Encéfalo , Glucocorticoides , Humanos , Doença de Alzheimer/patologia , Neurônios/patologia , Receptor trkB , Receptores de Glucocorticoides
6.
Behav Brain Res ; 463: 114918, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38387696

RESUMO

Depression has emerged as the predominant psychiatric affliction affecting individuals. Prior research has substantiated the antidepressant properties exhibited by numerous anesthetics. Sevoflurane, a widely utilized inhalant anesthetic in clinical practice, remains relatively uncharted in terms of its specific antidepressant effects. In this study, we used open field test, forced swimming test and novelty-suppressed feeding test to investigate the anxiety and depression-like behaviors in C57BL/6 mice following the inhalation of sevoflurane. We then used western blotting to scrutinized the expression levels of proteins associated with the brain-derived neurotrophic factor (BDNF)-tryosine receptor kinase B (TrkB) pathway in the hippocampus and prefrontal cortex. To further investigate whether sevoflurane exerts antidepressant-like effects via the BDNF-TrkB pathway, we downregulated TrkB expression by administering siRNA into the lateral ventricle. We found that the inhalation of 2.5 % sevoflurane exerted a significant antidepressant-like effect, accompanied by an elevation in p-TrkB expression levels in the hippocampus and prefrontal cortex. Intriguingly, this antidepressant-like effect was abrogated following the downregulation of TrkB expression through the microinjection of siRNA into the lateral ventricle. In conclusion, this study provides evidence supporting the notion that sevoflurane exerts its antidepressant-like effect via the BDNF-TrkB signaling pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sevoflurano/farmacologia , Receptor trkB/metabolismo , Camundongos Endogâmicos C57BL , Antidepressivos/farmacologia , Antidepressivos/metabolismo , Hipocampo/metabolismo , RNA Interferente Pequeno/metabolismo , Estresse Psicológico/metabolismo , Modelos Animais de Doenças
7.
Neuropeptides ; 104: 102411, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335799

RESUMO

Brain-derived neurotrophic factor (BDNF), one of the neurotrophins, and its specific receptor TrkB, are abundantly distributed in the central nervous system (CNS) and have a variety of biological effects, such as neural survival, neurite elongation, neural differentiation, and enhancing synaptic functions. Currently, there are two TrkB subtypes: full-length TrkB (TrkB-FL), which has a tyrosine kinase in the intracellular domain, and TrkB-T1, which is a tyrosine kinase-deficient form. While TrkB-FL is a typical tyrosine kinase receptor, TrkB-T1 is a main form expressed in the CNS of adult mammals, but its function is unknown. In this study, we performed fluorescent staining of the cerebral cortex of adult mice, by using TrkB-T1 antiserum and various antibodies of marker molecules for neurons and glial cells. We found that TrkB-T1 was expressed not only in neurons but also in astrocytes. In contrast, little expression of TrkB-T1 was found in oligodendrocytes and microglia. TrkB-T1 was expressed in almost all of the cells expressing TrkB-FL, indicating the direct interaction between TrkB subtypes. These findings suggest that a part of various functions of BDNF-TrkB signaling might be due to the interaction and cellular localization of TrkB subtypes in the cerebral cortex.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Córtex Cerebral , Neurônios , Receptor trkB , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Neuritos/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo
8.
Clin Exp Med ; 24(1): 10, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240952

RESUMO

Tropomyosin receptor kinases (TRK) are attractive targets for cancer therapy. As TRK-inhibitors are approved for all solid cancers with detectable fusions involving the Neurotrophic tyrosine receptor kinase (NTRK)-genes, there has been an increased interest in optimizing testing regimes. In this project, we wanted to find the prevalence of NTRK fusions in a cohort of various histopathological types of early-stage lung cancer in Norway and to investigate the association between TRK protein expression and specific histopathological types, including their molecular and epidemiological characteristics. We used immunohistochemistry (IHC) as a screening tool for TRK expression, and next-generation sequencing (NGS) and fluorescence in situ hybridization (FISH) as confirmatory tests for underlying NTRK-fusion. Among 940 cases, 43 (4.6%) had positive TRK IHC, but in none of these could a NTRK fusion be confirmed by NGS or FISH. IHC-positive cases showed various staining intensities and patterns including cytoplasmatic or nuclear staining. IHC-positivity was more common in squamous cell carcinoma (LUSC) (10.3%) and adenoid cystic carcinoma (40.0%), where the majority showed heterogeneous staining intensity. In comparison, only 1.1% of the adenocarcinomas were positive. IHC-positivity was also more common in men, but this association could be explained by the dominance of LUSC in TRK IHC-positive cases. Protein expression was not associated with differences in time to relapse or overall survival. Our study indicates that NTRK fusion is rare in early-stage lung cancer. Due to the high level of false positive cases with IHC, Pan-TRK IHC is less suited as a screening tool for NTRK-fusions in LUSC and adenoid cystic carcinoma.


Assuntos
Carcinoma Adenoide Cístico , Neoplasias Pulmonares , Neoplasias , Masculino , Humanos , Receptor trkA/genética , Receptor trkC/genética , Receptor trkB/genética , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Proteínas de Fusão Oncogênica/genética , Recidiva Local de Neoplasia , Neoplasias/diagnóstico
9.
Biomolecules ; 14(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38254691

RESUMO

The brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase receptor B (TrkB) are widely expressed in the central nervous system. It is well documented that neurons express BDNF and full-length TrkB (TrkB.FL) as well as a lower level of truncated TrkB (TrkB.T). However, there are conflicting reports regarding the expression of BDNF and TrkB in glial cells, particularly microglia. In this study, we employed a sensitive and reliable genetic method to characterize the expression of BDNF and TrkB in glial cells in the mouse brain. We utilized three Cre mouse strains in which Cre recombinase is expressed in the same cells as BDNF, TrkB.FL, or all TrkB isoforms, and crossed them to Cre-dependent reporter mice to label BDNF- or TrkB-expressing cells with soma-localized EGFP. We performed immunohistochemistry with glial cell markers to examine the expression of BDNF and TrkB in microglia, astrocytes, and oligodendrocytes. Surprisingly, we found no BDNF- or TrkB-expressing microglia in examined CNS regions, including the somatomotor cortex, hippocampal CA1, and spinal cord. Consistent with previous studies, most astrocytes only express TrkB.T in the hippocampus of adult brains. Moreover, there are a small number of astrocytes and oligodendrocytes that express BDNF in the hippocampus, the function of which is to be determined. We also found that oligodendrocyte precursor cells, but not mature oligodendrocytes, express both TrkB.FL and TrkB.T in the hippocampus of adult mice. These results not only clarify the expression of BDNF and TrkB in glial cells but also open opportunities to investigate previously unidentified roles of BDNF and TrkB in astrocytes and oligodendrocytes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neuroglia , Receptor trkB , Animais , Camundongos , Astrócitos , Fator Neurotrófico Derivado do Encéfalo/genética , Microglia , Oligodendroglia , Receptor trkB/genética
10.
Molecules ; 29(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276593

RESUMO

One common event that is the most detrimental in neurodegenerative disorders, even though they have a complex pathogenesis, is the increased rate of neuronal death. Endogenous neurotrophins consist of the major neuroprotective factors, while brain-derived neurotrophic factor (BDNF) and its high-affinity tyrosine kinase receptor TrkB are described in a number of studies for their important neuronal effects. Normal function of this receptor is crucial for neuronal survival, differentiation, and synaptic function. However, studies have shown that besides direct activation, the TrkB receptor can be transactivated via GPCRs. It has been proven that activation of the 5-HT4 receptor and transactivation of the TrkB receptor have a positive influence on neuronal differentiation (total dendritic length, number of primary dendrites, and branching index). Because of that and based on the main structural characteristics of LM22A-4, a known activator of the TrkB receptor, and RS67333, a partial 5-HT4 receptor agonist, we have designed and synthesized a small data set of novel compounds with potential dual activities in order to not only prevent neuronal death, but also to induce neuronal differentiation in neurodegenerative disorders.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Receptor trkB , Fármacos Neuroprotetores/farmacologia , Serotonina , Células Cultivadas , Fator Neurotrófico Derivado do Encéfalo , Doenças Neurodegenerativas/tratamento farmacológico
11.
Sci Adv ; 10(4): eadg1679, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277461

RESUMO

Metabotropic glutamate receptor 2 (mGlu2) attracts particular attention as a possible target for a new class of antipsychotics. However, the signaling pathways transducing the effects of mGlu2 in the brain remain poorly characterized. Here, we addressed this issue by identifying native mGlu2 interactome in mouse prefrontal cortex. Nanobody-based affinity purification and mass spectrometry identified 149 candidate mGlu2 partners, including the neurotrophin receptor TrkB. The later interaction was confirmed both in cultured cells and prefrontal cortex. mGlu2 activation triggers phosphorylation of TrkB on Tyr816 in primary cortical neurons and prefrontal cortex. Reciprocally, TrkB stimulation enhances mGlu2-operated Gi/o protein activation. Furthermore, TrkB inhibition prevents the rescue of behavioral deficits by glutamatergic antipsychotics in phencyclidine-treated mice. Collectively, these results reveal a cross-talk between TrkB and mGlu2, which is key to the behavioral response to glutamatergic antipsychotics.


Assuntos
Antipsicóticos , Camundongos , Animais , Antipsicóticos/farmacologia , Receptor trkB/metabolismo , Córtex Pré-Frontal/metabolismo , Células Cultivadas , Neurônios/metabolismo
12.
Life Sci ; 336: 122282, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008209

RESUMO

As one of the most prevalent neurotrophic factors in the central nervous system (CNS), brain-derived neurotrophic factor (BDNF) plays a significant role in CNS injury by binding to its specific receptor Tropomyosin-related kinase receptor B (TrkB). The BDNF/TrkB signaling pathway is crucial for neuronal survival, structural changes, and plasticity. BDNF acts as an axonal growth and extension factor, a pro-survival factor, and a synaptic modulator in the CNS. BDNF also plays an important role in the maintenance and plasticity of neuronal circuits. Several studies have demonstrated the importance of BDNF in the treatment and recovery of neurodegenerative and neurotraumatic disorders. By undertaking in-depth study on the mechanism of BDNF/TrkB function, important novel therapeutic strategies for treating neuropsychiatric disorders have been discovered. In this review, we discuss the expression patterns and mechanisms of the TrkB/BDNF signaling pathway in CNS damage and introduce several intriguing small molecule TrkB receptor agonists produced over the previous several decades.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptor trkB , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais , Sistema Nervoso Central/metabolismo , Neurônios/metabolismo
13.
Curr Top Med Chem ; 24(1): 3-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38058091

RESUMO

BACKGROUND: The tropomyosin receptor kinases (TRKs) are crucial for many cellular functions, such as growth, motility, differentiation, and metabolism. Abnormal TRK signalling contributes to a variety of human disorders, most evidently cancer. Comprehensive genomic studies have found numerous changes in the genes that code for TRKs like MET, HER2/ErbB2, and EGFR, among many others. Precision medicine resistance, relapse occurring because of the protein point mutations, and the existence of multiple molecular feedback loops are significant therapeutic hurdles to the long-term effectiveness of TRK inhibitors as general therapeutic agents for the treatment of cancer. OBJECTIVE: This review is carried out to highlight the role of tropomyosin receptor kinase in cancer and the function of TRK inhibitors in the intervention of cancer. METHODS: Literature research has been accomplished using Google Scholar and databases like ScienceDirect, WOS, PubMed, SciFinder, and Scopus. RESULTS: In this review, we provide an overview of the main molecular and functional properties of TRKs and their inhibitors. It also discusses how these advancements have affected the development and use of novel treatments for malignancies and other conditions caused by activated TRKs. Several therapeutic strategies, including the discovery and development of small-molecule TRK inhibitors belonging to various chemical classes and their activity, as well as selectivity towards the receptors, have been discussed in detail. CONCLUSION: This review will help the researchers gain a fundamental understanding of TRKs, how this protein family works, and the ways to create chemical moieties, such as TRK inhibitors, which can serve as tailored therapies for cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Receptor trkB/metabolismo , Receptor trkB/uso terapêutico , Receptor trkA/metabolismo , Receptor trkA/uso terapêutico , Tropomiosina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
14.
Neurobiol Dis ; 190: 106377, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092270

RESUMO

Tropomyosin receptor kinase B (TrkB) and its primary ligand brain-derived neurotrophic factor (BDNF) are expressed in the neuromuscular system, where they affect neuronal survival, differentiation, and functions. Changes in BDNF levels and full-length TrkB (TrkB-FL) signaling have been revealed in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), two common forms of motor neuron diseases that are characterized by defective neuromuscular junctions in early disease stages and subsequently progressive muscle weakness. This review summarizes the current understanding of BDNF/TrkB-FL-related research in SMA and ALS, with an emphasis on their alterations in the neuromuscular system and possible BDNF/TrkB-FL-targeting therapeutic strategies. The limitations of current studies and future directions are also discussed, giving the hope of discovering novel and effective treatments.


Assuntos
Esclerose Amiotrófica Lateral , Atrofia Muscular Espinal , Humanos , Fator Neurotrófico Derivado do Encéfalo , Neurônios Motores/fisiologia , Tropomiosina , Receptor trkB
15.
Neurochem Res ; 49(3): 533-547, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38006577

RESUMO

Epilepsy is a neurological disease characterized by repeated seizures. Despite of that the brain-derived neurotrophic factor (BDNF) is implicated in the pathogenesis of epileptogenesis and epilepsy, BDNF may have a neuroprotective effect against epilepsy. Thus, the goal of the present review was to highlight the protective and detrimental roles of BDNF in epilepsy. In this review, we also try to find the relation of BDNF with other signaling pathways and cellular processes including autophagy, mTOR pathway, progranulin (PGN), and α-Synuclein (α-Syn) which negatively and positively regulate BDNF/tyrosine kinase receptor B (TrkB) signaling pathway. Therefore, the assessment of BDNF levels in epilepsy should be related to other neuronal signaling pathways and types of epilepsy in both preclinical and clinical studies. In conclusion, there is a strong controversy concerning the potential role of BDNF in epilepsy. Therefore, preclinical, molecular, and clinical studies are warranted in this regard.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Epilepsia , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo , Convulsões/metabolismo , Transdução de Sinais/fisiologia , Receptor trkB/metabolismo
16.
Behav Brain Res ; 460: 114814, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38104636

RESUMO

The most prevalent type of dementia, Alzheimer's disease (AD), is a compelling illustration of the link between cognitive deficits and neurophysiological anomalies. We investigated the possible protective effect of intranasal insulin intake with exercise on amyloid-ß (Aß)-induced neuronal damage. The level of hippocampal brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) were analyzed to understand the involvement of BDNF-TrkB pathway in this modulation. In this study, we induced AD-like pathology by amyloid-ß (Aß) administration. Then, we examined the impact of a 4-week pretreatment of moderate treadmill exercise and intranasal intake of insulin on working and spatial memory in male Wistar rats. We also analyzed the mechanisms of improved memory and anxiety through changes in the protein level of BDNF and TrkB. Results showed that animals received Aß had impaired working memory, increased anxiety which were accompanied by lower protein levels of BDNF and TrkB in the hippocampus. The exercise training and intranasal insulin improved working memory deficits, decreased anxiety, and increased BDNF, and TrkB levels in the hippocampus of animals received Aß. Our finding of improved memory performance after intranasal intake of insulin and exercise may be of significance for the treatment of memory impairments and anxiety-like behavior in AD.


Assuntos
Doença de Alzheimer , Ratos , Masculino , Animais , Doença de Alzheimer/metabolismo , Insulina/metabolismo , Receptor trkB/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos Wistar , Peptídeos beta-Amiloides/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Exercício Físico , Hipocampo/metabolismo
17.
Behav Brain Res ; 460: 114817, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38122904

RESUMO

Environmental factors such as undernutrition and environmental enrichment can promote changes in the molecular and behavioural mechanisms related to cognition. Herein, we investigated the effect of enriched environment stimulation in rats that were malnourished in the pre- and postnatal periods on changes in the gene expression of brain-derived neurotrophic factor and its receptor in the hippocampus, as well as on anxiety traits and memory. Early undernutrition promoted weight reduction, increased the risk analysis, reduced permanence in the open arm of the elevated plus-maze and induced a reduction in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B. However, exposure to an enriched environment from 30 to 90 days' old maintained the malnourished phenotype, leading to weight reduction in the control group. In addition, the enriched environment did not alter the risk assessment in the undernourished group, but it did increase the frequency of labyrinth entries. Sixty-day exposure to the enriched environment resulted in a reversal in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus of malnourished rats and favoured of long-term memory in the object recognition test in the open-field. These results suggest that an enriched environment may have a protective effect in adult life by inducing changes in long-term memory and anxiety traits in animals that were undernourished in early life. Furthermore, reversing these effects of undernutrition involves mechanisms linked to the molecular signalling of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Desnutrição , Gravidez , Feminino , Ratos , Animais , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Tropomiosina/metabolismo , Meio Ambiente , Ansiedade , Vitaminas , Desnutrição/complicações , Desnutrição/metabolismo , Hipocampo/metabolismo , Redução de Peso , Receptor trkB/metabolismo
18.
Cell Rep ; 43(1): 113595, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38117654

RESUMO

Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and the physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK) TrkB and the G-protein-coupled receptor (GPCR) metabotropic glutamate receptor 5 (mGluR5) together mediate hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode switch that drives BDNF-dependent sustained, oscillatory Ca2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gßγ, released by TrkB, and Gαq-GTP, released by mGluR5, to enable physiologically relevant RTK/GPCR crosstalk.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptores Proteína Tirosina Quinases , Transdução de Sinais/fisiologia , Receptor trkB/metabolismo , Receptores Acoplados a Proteínas G , Plasticidade Neuronal/fisiologia
19.
Neuroreport ; 35(4): 216-224, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38141009

RESUMO

Cognitive dysfunction is one of the common complications of cerebral ischemia-reperfusion (CI/R) injury after ischemic stroke. Neuroinflammation and oxidative stress are the core pathological mechanism of CI/R injury. The activation of brain derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling antagonize cognitive dysfunction in a series of neuropathy. Naringenin (NAR) improves cognitive function in many diseases, but the role of NAR in CI/R injury-induced cognitive dysfunction remains unexplored. The study aimed to explore the potential protective effects of NAR in CI/R injury-induced cognitive dysfunction and underlying mechanism. The rats were exposed to transient middle cerebral artery occlusion (MCAO) and then treated with distilled water or NAR (50 or 100 mg/kg/day, p.o.) for 30 days. The Y-maze test, Novel object recognition test and Morris water maze test were performed to assess cognitive function. The levels of oxidative stress and inflammatory cytokines were measured by ELISA. The expressions of BDNF/TrkB signaling were detected by Western blot. NAR prevented cognitive impairment in MCAO-induced CI/R injury rats. Moreover, NAR inhibited oxidative stress (reduced levels of malondialdehyde and 4-hydroxynonenal, increased activities of superoxide dismutase and Glutathione peroxidase) and inflammatory cytokines (reduced levels of tumor necrosis factor-α, Interleukin-1ß and Interleukin-6), up-regulated the expressions of BDNF and p-TrkB in hippocampus of MCAO-induced CI/R rats. NAR ameliorated cognitive dysfunction of CI/R rats via inhibiting oxidative stress, reducing inflammatory response, and up-regulating BDNF/TrkB signaling pathways in the hippocampus.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Flavanonas , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Doenças Neuroinflamatórias , Receptor trkB/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estresse Oxidativo , Citocinas/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
20.
J Ethnopharmacol ; 319(Pt 3): 117355, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37890805

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zhi-Zi-Hou-Po decoction (ZZHP), a traditional Chinese medicine (TCM) classic recipe, has been extensively applied for the remedy of depression. However, the underlying mechanism of ZZHP hasn't been fully elucidated and it needs to be further clarified. AIM OF STUDY: The aim of the study is to uncover the mechanisms of ZZHP's effect on depression. MATERIALS AND METHODS: C57BL/6 mice were employed to establish Chronic Unpredictable Mild Stress (CUMS) models. Behavioral tests were conducted for evaluating the antidepressant effects of ZZHP. Then, the monoamine neurotransmitters in the hippocampus through High Performance Liquid Chromatography Electrochemical Detection (HPLC-ECD) were utilized to assess the effect of ZZHP on the maintenance of monoamine neurotransmitter homeostasis. Immunofluorescence staining and Golgi staining were detected to analyze the effects of ZZHP on neuroplasticity in the hippocampus. Western Blot (WB) was utilized to examine the effects of ZZHP on BDNF/TrkB/CREB pathways. Finally, behavioral tests, WB and immunofluorescence staining were repeated after TrkB receptor antagonist was added to further confirm the underlying mechanism. RESULTS: Our results shown that ZZHP attenuated depressive-like symptoms in CUMS mice. Moreover, ZZHP remarkably reversed the reduction and maintained the homeostasis of monoamine neurotransmitters in the hippocampus. Simultaneously, ZZHP protected neuronal synaptic plasticity and promoted hippocampal neurogenesis. Furthermore, ZZHP stimulated the BDNF/TrkB/CREB pathway in the hippocampus. The addition of TrkB receptor antagonist inhibited the antidepressant effects of ZZHP, suggesting that ZZHP could not work without triggering the BDNF/TrkB/CREB pathway. CONCLUSION: This study demonstrates that ZZHP can alleviate depressive-like behavior and promote hippocampal neurogenesis in CUMS mice via activating the BDNF/TrkB/CREB pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Camundongos Endogâmicos C57BL , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Hipocampo , Neurogênese , Neurotransmissores/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...